file:///D:/_fip_root/External Plugins/External Plugins.html

Interacting with IDA through IPC channels

David Zimmer <dzzie@yahoo.com>

In this article we are going to discuss a mechanism that can be used to interact with IDA through
external applications.

The reason this technique was developed was to provide a convenient way for utility
applications to query information from IDA databases, and automate its interface.

Over the years, several methods have been tried such as pipes, and sockets. In the end, the
easiest Inter-Process Communication (IPC) technique I have found is the Windows specific
SendMessage API along with the WM_COPYDATA message. This technique was chosen for its
simplicity, reliability, and its inherently synchronous nature.

With this technique, the IDA server plugin creates a window and watches for command
messages to come in.

int idaapi init(wvoid)
{
//immediatly create server window for use (no need to launch plugin)
ServerHund = CreateWindow("EDIT","MESSAGE WIWDOW", O, O, O, O, O, 0O, O, O,
oldProc = (WNDFPROC)3SetWindowLong(ServerHwnd, GUL WNDPROC, (LONG)WindowPFroc)
i
LRESULT CALLBACK WindowProc (HUND hwnd, UINT uMsg, WPARAM wParam, LPARAM lFaram) {
if(uMsg != WM COPYDATA) return 0O;
if{ lParam == 0} return 0;
memcpy | (void?*) &CopyData, (void?*) lParam, sizeof (cpyData)):
if | CopyData.dwFlag == 3){
if(CopyData.chSize »>= sizeof(m msg)) CopyData.cblize = sizeof(m msg)-1;
memcpy ((void®) &m msg[0], [void*?CopyData.lpData, CopyData.chize)?
HandleMsg (m_msg) ; -

i
return 0;

(abbreviated C source to CreateWindow and receive messages)

The plugin contains its own text based API which can be used to automate actions and return
queried data back to the calling process. Example commands and data transfer routines are
shown below:

P
Jmp: lnghdr

Jmp nemwe: function neame

name va:func name: HUND [returns wvirtual address for function name
rename:oldnae: nevhame : HIND (gends back 1 for succeasa, 0 fail)
loadedfile: HUND

getasw: lugwre: HUND

Lo I IR - " U Y G

LT
(hwnd arguments specify which window handle receives data callback)

1 of4 12/25/2013 11:41 AM

file:///D:/_fip_root/External Plugins/External Plugins.html

bool SendlIntMessage (int hwnd, int resp)d
char tmp[30]={0};
sprintf (tmp, ":d", resp):
return SendTextcMessage (hwnd, tinp, Strlenitimp)) ;

hool SendTextMessage (int hwnd, char *Buffer, int blen)
{
cpylData cp3tructhatar
cpa3tructData.ch3ize = kblen !
cp3tructbhata. lpbata = [(int) Buffer:
cpatructData.duFlag = 3:
JendMessage ((HUND) hund, WM COPYDATL, (WPARAM) hwnd, (LPARAM) ecp3tructhata);
rFeturn true;

There are several advantages to this technique. Traditional plugin development usually requires
compiling your code and launching the plugin from the host application. Debugging often entails
wading through runtime debug logs, inferring problems through observed behavior, and chasing
crashs in a debugger.

This technique allows you to debug your executable in the development IDE as normal,
harnessing all of its powerful capabilities such as edit and continue, call stack viewing, variable
watches, breakpoints etc.

Complex projects can be run directly while you iron out interface behaviors and are not
dependant upon the host. Datasets can even be loaded from test files so that many routines can
be debugged independently of IDA.

One project where this technique was put to good use was an experiment to see if a Javascript

IDE could be created for IDA automation tasks. The desire was for a scriptable interface that
supported intellisense, function prototype tool tips, and syntax highlighting.

2 of 4 12/25/2013 11:41 AM

3 of 4

file:///D:/_fip_root/External Plugins/External Plugins.html

-iol x|
B =

2 y="'";

3 va = O0x004014B0;

4 for (1=0;1<5; 14+) {
sz = ida.instsize(va):
y+= hiva) + " " + ida.getasm(va) + "\ria"™:
va+=se:

tiy)
10 ida.|

= -
functionend |

functionnamwe
functionstart
gecasm ;]

bl

401480 push OFFFFFFFFh
401482 push olfset sub_47ED1B
401487 mov eax, laige Is.0
401480 push eax

4014BE push ebx

Listening on hwnd 10830730 (0x460604)

104 Server Up hwnd=13501086 [O<CED29E)

IDB: D:_Lilguys\Procmon.exe

lpc Send: getasm:4193800:10880730 Blockry False
lpe Data: push OFFFFFFFFh

Ipc Send: gelasm:4133601:10880730 Blocking: False d

e L

With a project such as this, coding for the IDE behaviors is a major part of the development
task. To develop such an application strictly as a plugin would be a daunting endeavor.
Developing it as a standalone application was a great advantage where it could be run directly
from the Visual Studio IDE without any intermediate steps.

One other advantage to this technique is that it opens up plugin development to include higher
level languages that do not have native support for the IDA API*. Languages such as C#,
Delphi, and VB6 can easily interact with IDA through this mechanism. These languages have
excellent rapid GUI development capabilities and a wealth of complex components already
available to them. This technique is even open to Java developers through the JNI.

Once the intermediate API and the client access library is written, creating utilities to integrate
with IDA becomes a pretty quick process. Another example project that has come in handy is a
Wingraph32 replacement that was coded in about a day.

The interface shown below automatically syncs the IDA disassembly when graph nodes are
clicked and can perform several renaming operations.

12/25/2013 11:41 AM

4 of 4

file:///D:/_fip_root/External Plugins/External Plugins.html

¥ wingraph 32 replacement using M$ GLEE library - hitp:/ /sandsprite.com

data 00427100 dd offset _man >

N

man)

! dd offS...
— Remove Nodes Below

Rename Fundtion

—~— Prefoc ol Functions below

e S

sub_41%68 O C sub 417864

—

There are some limitations to this technique as well. The particular implementation detailed in
this article is Windows specific. It also requires both applications to be running on the same
machine.

Another consideration is that the data is crossing process boundaries which can be a
performance hit depending on what is being transferred and how often it is being invoked. For
example, extracting or patching large blocks of data would best be optimized by reserving the
use of the SendMessage API as the command channel, and utilizing files or shared memory for
the data transfer. This will likely be an optimization included in future revisions.

The example IDASRVR project linked to below currently supports 36 API and uses a simple text
based command protocol. Sample code is provided in C and C#. Client libraries are also
available for C# and VB6 in the associated projects below.

Sample Projects:

IDASrvr — IDA TPC Server example

IDA_Jscript — Javascript IDE PoC for IDA (VB6)

GleeGraph — C# Wingraph32 replacement

* You can create C# and VB6 in process plugins for IDA through COM. This was my first
approach, and was used in my IDACompare plugin.

12/25/2013 11:41 AM

